INTRODUCTION TO ROBOTIC SURGERY: ALL YOU NEED TO KNOW, BUT WERE AFRAID TO ASK !!

CHUCK LAWRENCE, MHA, RN ROBOTIC SURGERY PROGRAM MANAGER JOHNS HOPKINS HOSPITAL <u>CLAWRE12@JH.EDU</u> 410-502-7777

Disclosure:

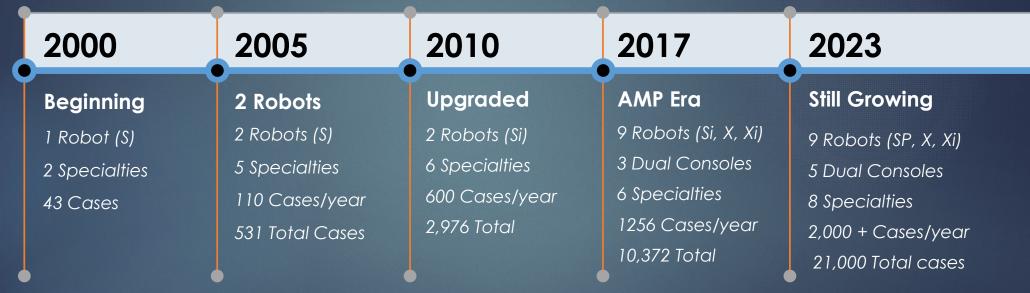
I do not represent The Johns Hopkins Hospital or Johns Hopkins Medical Institutions.

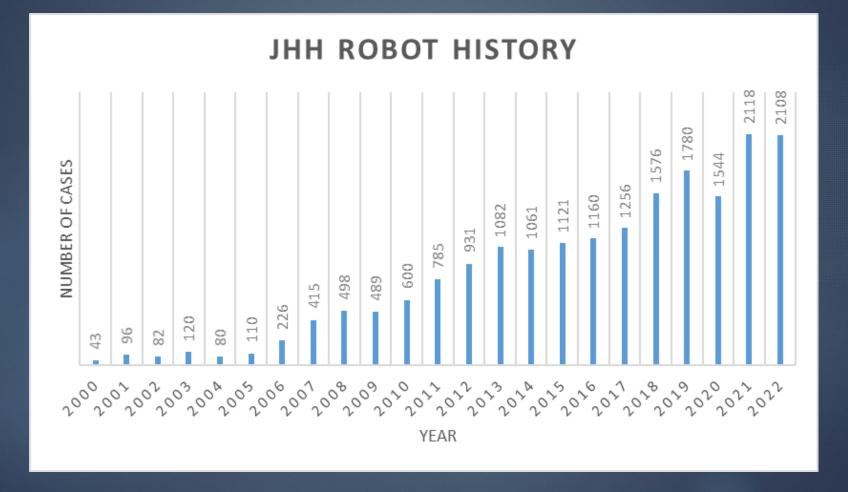
I have previously spoken for Intuitive surgical

I am on the Advisory Board at Xodus Medical

About Me

- RN since 1994
- Became the 1st Full time Robotic Coordinator: May 2019
- Masters in Health Administration in January, 2021
- Lean Six Sigma: Yellow Belt: 2022
- Accomplishments
 - Department of Surgery, Johns Hopkins Hospital, Perioperative Safety and Quality (2020, 2021, 2022).
 - Department of Surgery, Johns Hopkins Hospital, Surgical Grand Rounds. (2021)
 - > Department of Nursing Perioperative Grand Rounds (2020, 2023).
 - Perioperative AJ Salley Award winner: Johns Hopkins Hospital: 2020
 - Johns Hopkins Hospital Safety Star Award: 2022


- Lawrence, C. "The Role of the Robotics Coordinator: Improving Efficiency in a Robotic Surgery Program." AORN Journal 115 (3). (2022). 239-249.
- Haghshenas, J. DO; Florecki, K. MD; Torres, C. MD, MPH; Manukyan, M, MD; Kent, A, MD, MPH; Lawrence, C. MHA, RN; Sakran, J.. MD, MPH, MPA.
 "Incorporation of a Robotic Surgery Training Curriculum in Acute Care Surgical Fellowship". Journal of Trauma and Acute Care Surgery, May 1, 2023. | DOI: 10.1097/TA.000000000003996
- Jones BT, Ha JS, Lawrence C, Tsai LL, Yang SC, A Dedicated Robotic Bedside Physician Assistant Significantly Enhances Trainee Console Operating Time in General Thoracic Surgery, JTCVS Open (2023), doi: https://doi.org/10.1016/j.com.2023.08.024.
- Haghshenas, J. DO; Florecki, K. MD; Torres, C. MD, MPH; Manukyan, M, MD; Kent, A, MD, MPH; Lawrence, C. MHA, RN; Sakran, J.. MD, MPH, MPA. "The Evolution and Development of a Robotic Acute Care Surgery Program". Journal of Trauma and Acute Care Surgery (2023):10.1097/TA.000000000004020, June 6, 2023. | DOI: 10.1097/TA.00000000004020



Robotic Timeline: 2000 – Present

Year over Year Growth

Robot Components

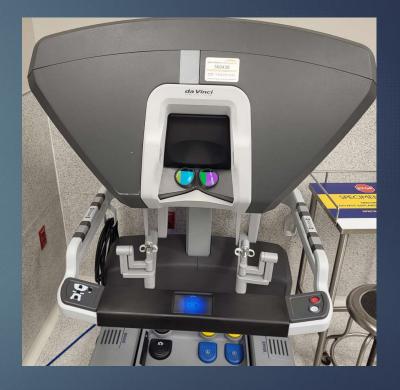
Patient Cart


```
Surgeon Console
```

Learning Objective:
Summarize the top 3 features and benefits of each system component

Patient Cart

Boom
Universal Arms
Helm Touchpad


Vision Cart

Touchscreen Monitor ERBE dV Generator Endoscope Controller

Surgeon Console

> 3D Viewer > Hand Controls > Ergonomic design

Patient Cart Overview

Learning Objectives: Identify Patient Cart components Identify Patient Cart helm components

- Identify Guided Setup procedure selections

Patient Cart: Components

- > Cart Base
- Column
- ≻ Boom
- ➢ Microphone
- > Arms
- Instrument Carriage
- Cannula mount

Patient Cart: Components

Clutch one arm – press and hold or quick click

Raise and lower the patient clearance joints on an arm using the patient clearance buttons Grab and move arms individually

Raise and lower boom using extended port clutch Port clutch one arm

Patient Cart: Components

Patient Cart: Guided Set up

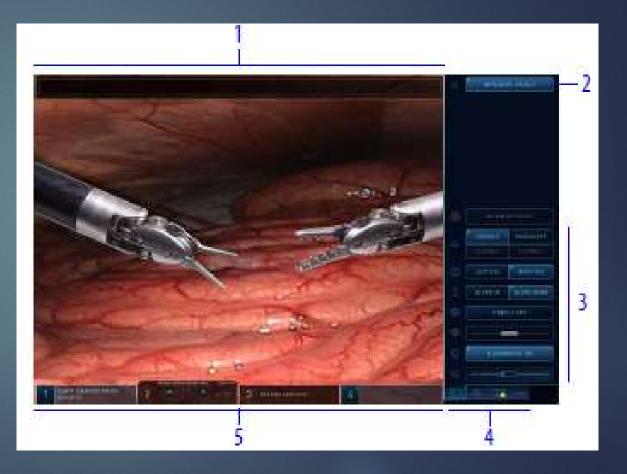
Draping the Robot

https://web.microsoftstream.com/video/ec7f0eb9-87b8-4c97-a447-5e925f2e9553

Patient Cart: Docking, Targeting & Alignment

Vision Cart Overview

Learning Objective: Interpret touchscreen interface and use it to


- Interpret touchscreen interface and use it to complete typical OR Setup and settings adjustment tasks
- Identify da Vinci and handheld monopolar and bipolar instruments for use with the ERBE VIO dV generator
- Identify the endoscope components

Vision Cart: Touchscreen

- System status message area
 Messages (visible/hidden)
- 3. Options

 Menu tabs (Display tab selected)
 Arm, instrument, and endoscope status area

Vision Cart: On Site Connection

Vision Cart: ERBE

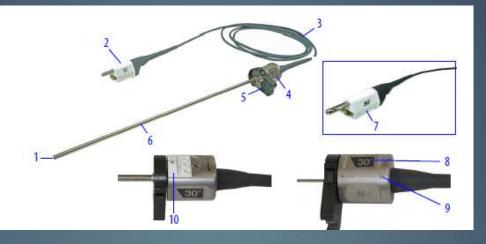
ERBE VIO dV 1.0

ERBE VIO dV 2.0

Vision Cart: ERBE Connections

Monopolar

Bipolar

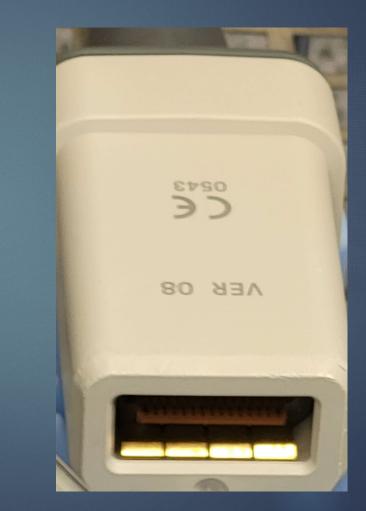

Vision Cart: Endoscope & Controller

1. Tip

- 2. White connector
- 3. Short cable
- 4. Housing
- 5. Base
- 6. Shaft
- 7. No connector

cover

8. Angle marking 9. 8 mm marking 10. White label

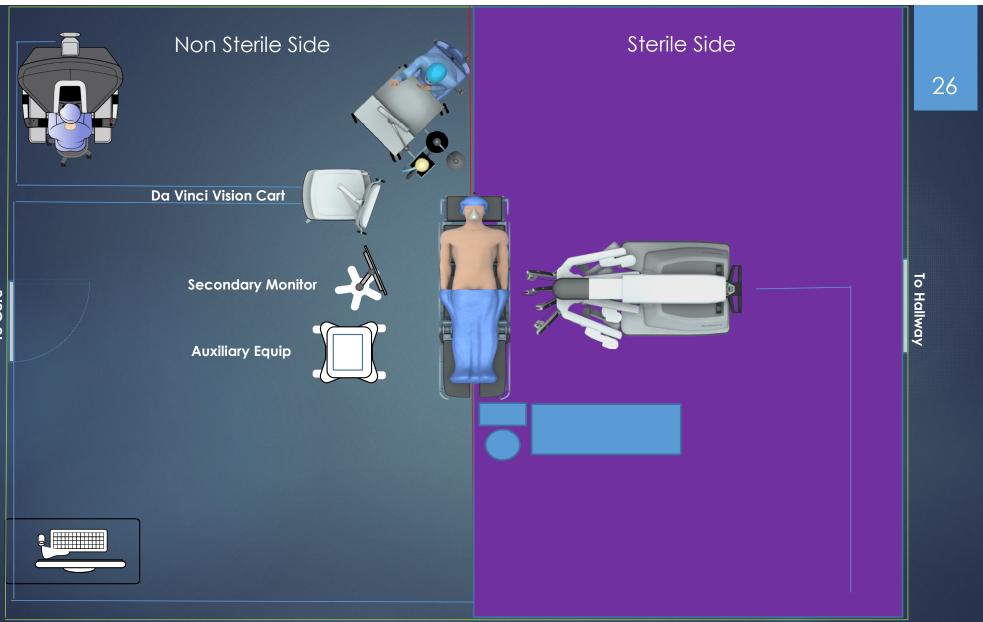


 Base
 Release lever (one on each side)
 Buttons
 Endoscope LED



Vision Cart: Endoscope & Controller

Vision Cart: Endoscope & Controller



OR Set Up

Learning Objectives:

- Articulate considerations for efficient da Vinci Xi setup in the OR where training is held
- Describe conditions under which system components are used in standalone mode
- Manage cables to maintain open traffic pathways, sterility and sufficient reach needed during surgery

To Core

Instrumentation

Da Vinci Instruments

Robotic instruments designed to enable precision beyond the limits of the

human hand

Instrument Components, Lives and Processing

Monopolar Curved Scissors

Incorrect

Incorrect

Correct

Instrument Categories

Monopolar Cautery Instruments
8 mm Monopolar Curved Scissors
8 mm Permanent Cautery Hook
8 mm Permanent Cautery Spatula
Bipolar Cautery Instruments
8 mm Maryland Bipolar Forceps
8 mm Fenestrated Bipolar Forceps
8 mm Curved Bipolar Dissector
8 mm Micro Bipolar Forceps
8 mm Long Bipolar Grasper
Needle Drivers
8 mm Large Needle Driver
8 mm Mega™ Needle Driver
8 mm Large SutureCut [™] Needle Driver
8 mm Mega SutureCut Needle Driver
Graspers
8 mm Black Diamond Micro Forceps
8 mm ProGrasp Forceps
8 mm Tenaculum Forceps
8 mm Tip-up Fenestrated Grasper
8 mm Resano Forceps
8 mm Small Graptor™ (Grasping Retractor)
8 mm Long Tip Forceps
8 mm Cadiere Forceps
8 mm Cobra Grasper
CP A P

Clip Appliers	
8 mm Large Clip Applier	
8 mm Medium-Large Clip Applier	
8 mm Small Clip Applier	
Specialty Instruments	
8 mm Dual Blade Retractor	
8 mm Atrial Retractor Short Right	
8 mm Cardiac Probe Grasper	
8 mm DeBakey Forceps	
8 mm Suction Irrigator	
Scissors	
8 mm Potts Scissors	
8 mm Round Tip Scissors	

Key Takeaways

Questions?